Estimation of tropical forest structural characteristics using large-footprint lidar
نویسندگان
چکیده
Quantification of forest structure is important for developing a better understanding of how forest ecosystems function. Additionally, estimation of forest structural attributes, such as aboveground biomass (AGBM), is an important step in identifying the amount of carbon in terrestrial vegetation pools and is central to global carbon cycle studies. Although current remote sensing techniques recover such tropical forest structure poorly, new large-footprint lidar instruments show great promise. As part of a prelaunch validation plan for the Vegetation Canopy Lidar (VCL) mission, the Laser Vegetation Imaging Sensor (LVIS), a large-footprint airborne scanning lidar, was flown over the La Selva Biological Station, a tropical wet forest site in Costa Rica. The primary objective of this study was to test the ability of large-footprint lidar instruments to recover forest structural characteristics across a spectrum of land cover types from pasture to secondary and primary tropical forests. LVIS metrics were able to predict field-derived quadratic mean stem diameter (QMSD), basal area, and AGBM with R values of up to .93, .72, and .93, respectively. These relationships were significant and nonasymptotic through the entire range of conditions sampled at the La Selva. Our results confirm the ability of large-footprint lidar instruments to estimate important structural attributes, including biomass in dense tropical forests, and when taken along with similar results from studies in temperate forests, strongly validate the VCL mission framework. D 2002 Elsevier Science Inc. All rights reserved.
منابع مشابه
Estimation of tropical rain forest aboveground biomass with small-footprint lidar and hyperspectral sensors
متن کامل
Above-ground biomass estimation in closed canopy Neotropical forests using lidar remote sensing: factors affecting the generality of relationships
Aim Previous studies have developed strong, site-specific relationships between canopy metrics from lidar (light detecting and ranging) remote sensing data and forest structural characteristics such as above-ground biomass (AGBM), but the generality of these relationships is unknown. In this study, we examine the generality of relationships between lidar metrics and forest structural characteri...
متن کاملSpatially-Explicit Testing of a General Aboveground Carbon Density Estimation Model in a Western Amazonian Forest Using Airborne LiDAR
Mapping aboveground carbon density in tropical forests can support CO2 emission monitoring and provide benefits for national resource management. Although LiDAR technology has been shown to be useful for assessing carbon density patterns, the accuracy and generality of calibrations of LiDAR-based aboveground carbon density (ACD) predictions with those obtained from field inventory techniques sh...
متن کاملEstimation of Forest Structural Parameters from Lidar and Sar Data
Vegetation spatial structure including plant height, biomass, vertical and horizontal heterogeneity, is an important factor influencing the exchanges of matter and energy between landscape and atmosphere, and the biodiversity of ecosystems. Regional and global forest biomass and forest structure estimation is essential for understanding and monitoring ecosystem responses to human activities and...
متن کاملRelationship between Lidar Metrics and Aboveground Biomass in Closed-canopy Neotropical Forests
Previous studies have shown that canopy metrics from lidar data are highly correlated with aboveground biomass in a variety of closedcanopy forests, however the generality of these site-specific relationships has remained untested. In this study, we compare relationships between lidar canopy metrics and forest structural summaries from a tropical wet forest site in Costa Rica and across a serie...
متن کامل